
Lecture 6: MCMC + (Deep) Uncertainty Models

CS/CNS/EE/IDS 159: Advanced Topics in Machine Learning
Caltech, Spring 2023

James Bowden

1

Lecture Outline

• Approximate Inference: SVI vs. MCMC

• MCMC: approximately sampling from the “true” posterior

• (Deep) Uncertainty models (inference-method agnostic?)
• Gaussian processes

• (Bayesian) Neural networks

• Deep kernels

• (Deep) ensembles

• Neural processes + more

2

Refresher: Approximate Posterior Inference

• Why posterior inference?
• Learn a distribution over parameters, θ, for our model

• Given posterior: sample parameters, compute predictive distribution,
compute predictive uncertainties for any test point, …

• Why approximate?
• Evidence (“marginal likelihood”) is generally intractable: “marginalize” out all

parameters, i.e., compute high-dimensional integral w/ dim(θ)

• Want complex models / high-dim θ, have data from complex distribution

3

SVI

• How can we use backprop to
learn an approximate posterior?

• Focus on formulating a
variational objective

• Takes advantage of autograd
packages, GPU

• Generally faster!

• What if true posterior ∉ chosen
family? Not even close?

MCMC

• How can we “directly” sample
from the posterior?

• Focus on your sampler matching
the true posterior, and quickly!

• Takes advantage of compilation
packages, CPU / parallel proc.

• Generally slower

• Exact in the limit!

4

Summary: Approximate Posterior Inference

• Depends heavily on downstream tasks!

SVI

• Larger datasets

• Quicker exploration of many
models

• Generally underestimates
posterior variance
• Perspective as regularizing?

• Assumes independence of vars
(mean-field)

MCMC

• Smaller datasets

• Have model class we’re pretty
confident in already

• Require precise inference
• More complex underlying dist.?

• Overfit data, noise?

• Works on highly-correlated vars

5

When to use...? (from Blei et al. 2018)

https://arxiv.org/pdf/1601.00670.pdf

Questions?

MCMC: Markov Chain Monte Carlo

• Why Markov chains?
• If you can get chain to converge to desired stationary distribution…

• Very cheap* to draw samples from this distribution!

• Why Monte Carlo?
• Customary name for simulation of random processes

• So, if we can arbitrarily draw samples from the posterior, good
enough!
• In the limit, we’ll recover the “true posterior”*

7

Markov chains

A Markov chain is defined by:

• A state space, X, e.g., all possible parameter vectors

• An initial distribution, P(X1)

• A transition probability distribution, P(Xn+1 | Xn)
• Remove dependence on n

We get a chain of random elements X1, X2, …, Xn

• Each sample in the chain is drawn from P(Xn+1 | Xn)

• Would like P(Xn+1 | Xn) = P(θ|D), the posterior → posterior sampling!

8

MCMC for Bayesian inference

What do we want for Bayesian inference?

• Generally, predictive mean and variance:

What do we need from MCMC?

• Posterior samples,

• Hopefully: accurate* + lots of them

9

Relevant Markov chain properties

Markov chain: sequence of random elements X1, X2, … where:

• Markov property: P(Xn+1 | X1, … Xn) = P(Xn+1 | Xn)

• Ergodicity: can get to any state X ∈ X (not necessarily in 1 step)
• Long-term, each state is independent of start state

• Reversibility: forward chain and reversed chain have same distr.
• Implies stationarity, not other way around

• Stationarity: P(Xn) does not depend on n (along w/ MP)
• Stationary distribution, πi = P(Xn = i)

Reversibility + ergodicity => distribution of samples → π(X) in limit
10

MCMC samplers

Intuition: spend time at any θ ∈ θ proportional to target density

• Metropolis-Hastings (1953 / 1970, physicists/chemists)

• Gibbs (1984) – MH special case

• Brought to statistics, Bayesian community in 1990

• Hamiltonian MC (1987, Neal 1996, Stan 2012)

• NUTS (2014) – HMC extension

• Slice sampling – fun bonus content

• …? your sampler?
11

Metropolis-Hastings

Algorithm sketch:

• Choose arbitrary starting state, θ1

• Choose arbitrary* proposal distribution, P(θcand | θn)

• Generally chosen to be symmetric, e.g., N(θn , σ
2), σ2 is a hyperparameter

• For t samples:

• Pick θcand ~ P(θcand | θn)

• Compute acceptance ratio, α = P(θcand |D) / P(θn |D)

• Generate uniform random number r ∈ [0,1]

• Accept θn+1 = θcand if α ≥ r; o/w reject and θn+1 = θn
12

Metropolis-Hastings

• Acceptance ratio includes posterior…

• Key insight: only need unnormalized density (prior * likelihood)

• i.e., don’t need to calculate the (intractable) marginal likelihood!

• Marginal is not dependent on choice of θ

13

MH: Properties satisfied?

• Markov property: P(Xn+1 | X1, … Xn) = P(Xn+1 | Xn)
• Yes, proposal distribution only relies on θn

• Ergodicity: can get to any state X ∈ X (not necessarily in 1 step)
• Yes, Gaussian can get to any vector in θ

• Reversibility: forward chain and reversed chain have same distr.
• Gaussian update: symmetric probability between θn+1 and θn

• Stationarity: P(Xn) does not depend on n (along w/ MP)
• By reversibility

• Stationary distribution: the posterior!

14

MH conclusions

• Fun visualization (1 and 2)

• Pretty intuitive

• What proposal distribution to choose?
• If Gaussian, what σ2 ?

• How to cover high-dim θ space well?

• “Too random” – high rejection rates, wasted compute

• In practice, nearby samples are correlated
• May take many samples to reach limit behavior

15

https://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/

Questions?

Gibbs (special case of MH)

Algorithm sketch:

• Choose arbitrary starting state, θ1

• For t samples:

• Sample each component of θn+1 , θn+1
i , i ∈ [1, m], holding others fixed

• θn+1
i ~ P(θn+1

i | θn+1
1 , …, θn+1

i-1 , θn
i+1 , …, θn

m)

• Iteratively sample from conditional posterior, P(θ i |D, θ -i)

• P(θ |D) = P(θ mi θ -i |D) = P(θ i |D, θ -i) * P(θ -i |D)

• Good for e.g., PGMs specified as collection of conditionals, conjugate priors

• MH special case: acceptance ratio is always 1 17

Hamiltonian (or hybrid) MC

• Metropolis-Hastings with gradient-based proposals

• Idea: include position, momentum information over density surface

• Starting at θn , run L steps of particle simulation (via Hamiltonian dynamics)

• Lands at θcand , which we accept using similar acceptance ratio criteria

• Better at exploring farther from last state

• More likely to yield candidates that are actually accepted

• Tends to “converge” to target distribution in fewer (more expensive) samples

• Fun visualization (3 and 4)
18

https://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/

NUTS (extension of HMC)

• What if L is too small?

• Behaves like random walk, similar to original MH algo.

• What if L is too large?

• Brings us back near θn , bad for efficient exploration!

• Fun visualization (5)

• Idea: adaptively set L to prevent U-turns
• Run Hamiltonian dynamics both forward and backward

• Stop when hit a U-turn condition!

• Randomly sample from path (both fwd, bwd)

• Fun visualization (6)
19

https://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/
https://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/

Sidenote: SGMCMC

• Gradient-based MCMC steps are expensive

• Have to compute gradient of log posterior, P(θn | D)

• Generally requires summing over all of the context data

• After SGD: can we subsample and make a stochastic approximation to
the gradient?

• Produces consistent estimates, scales with data, slower convergence

20

MCMC practicalities

• How many samples until convergence to stationary distribution?

• Mixing: how quickly your chain reaches π(X)

• Approximate in practice b/c still affected by starting position to some extent

• Some theory on this: see Markov chain central limit thm.

• How can you tell that you’ve converged? That you haven’t?

• Run multiple chains

• Various diagnostics (e.g., effective # samples, inter:intra-chain var. ratio)

21

MCMC practicalities

• Pseudo-convergence / multimodality

• Appears to converge, but eq. distribution is still conditioned on initialization

• Stuck in one mode due to hyperparameter settings, sampler?

• Fun visualization (7)

• Trade-off between chain length (limit convergence) and # chains
(convergence detection? avg. across initializations?)

22https://chi-feng.github.io/mcmc-demo/

https://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/
https://chi-feng.github.io/mcmc-demo/

MCMC: Implementation

• Python packages like NumPyro (jax-based), Pyro (torch-based), etc.
• Still need gradient capabilities for gradient-based samplers! Hence jax, torch

• R packages like stan, mcmc, etc.

• Write your own sampler! (just kidding, probably don’t)

• Embarrassingly parallelizable (Neiswanger et al. 2014)

• Generally, you provide:
• Target distribution [prior over θn , likelihood function] + data

• # chains, # samples, # burn-in, [thinning, initialization strategy, etc.]

23

https://arxiv.org/pdf/1311.4780.pdf

Uncertainties?

Lecture Outline

• Approximate Inference: SVI vs. MCMC

• MCMC: approximately sampling from the “true” posterior

• (Deep) Uncertainty models (inference-method agnostic?)
• Gaussian processes

• (Bayesian) Neural networks

• Deep kernels

• (Deep) ensembles

• Neural processes + more

25

High-Level: Approximate Posterior Inference

• We’ve seen how to do exact inference in special cases:
• BLR if prior, likelihood are Gaussian

• Exact Gaussian Processes “

• Otherwise: use either SVI, MCMC, or something else to approximate
the posterior or its samples
• In theory, you can be “Bayesian” about the parameters of any model

• What can we do with? Survey of models that produce uncertainties…

26

Refresher: Uncertainty in Bayesian inference

What do we want for Bayesian inference?

• Generally, predictive mean and variance:

What do we need from MCMC (or SVI)?

• Posterior samples,

• Hopefully: accurate* + lots of them

27

Gaussian Processes

• Exact GP gives closed-form posterior computation
• Can sample from, get predictive mean, variance

• Approximate GP inference…when should we do?
• GP hyperparameters are pretty minimal

• GP inference scales cubically with data

• Sparse GPs, non-Gaussian likelihoods, classification: no closed-form

• Variational GPs, MCMC GPs
• Define prior over hp (e.g., lengthscale, noise)

• SVI/MCMC doesn’t buy much in the way of UQ – GP already has var.

28

Neural networks

• Deterministic NN: scalar weights,
point estimate predictions

• Probabilistic Backpropagation (PBP):
• Distributions over weights like in a

standard BNN

• Instead of prediction error, compute
marginal log likelihood as loss

• Gradient update minimizes KL div.

• + approximations, implementation
details, etc.

29(Hernandez-Lobato and Adams 2015)

http://proceedings.mlr.press/v37/hernandez-lobatoc15.pdf

Neural networks

• Laplace approximation: 2nd order Taylor approx. about MAP
• Compute inverse Hessian of log likelihood: scales very poorly

• Monte Carlo Dropout: test-time dropout, viewed as approximate
posterior sampling
• Argument: approximate intractable posterior with q(w), a distribution over

matrices whose columns are randomly set to 0 == dropped out neuron

• Min. KL div. in this setting recovers L2 regularization loss that dropout uses

• Intuition: view instance of dropout as a sample, buys us predictive variance

• Super popular for its simplicity, has fallen out of favor of late (?)

30(Gal and Ghahramani 2016)

http://proceedings.mlr.press/v48/gal16.pdf

Neural networks

• “Standard” BNN training: SVI or MCMC!
• See Izmailov et al. 2021

31Hase et al. 2019

https://arxiv.org/pdf/2104.14421.pdf
https://pubs.rsc.org/en/content/articlehtml/2019/sc/c8sc04516j

Deep Kernels

• Representational power of NN

• UQ from GP

• Backprop through GP + NN
• Can also use SVI, MCMC, MC dropout

• Nice properties from both sides,
avoids custom kernel design, allows
for transfer / unsupervised (VAE?)
learning

• Overfitting, see Ober et al. 2021

• My current research! Ask me about :)
32Wilson et al. 2015

https://arxiv.org/pdf/2102.12108.pdf
https://arxiv.org/pdf/1511.02222.pdf

Ensembles

• Idea: train many independent models and combine
• Model combination makes sense when true model ∉ hypothesis class

• Bagging: fit models on different subsamples, average predictions
• e.g., random forests, extra trees, etc.

• Stacking: fit models on same data, use meta-model to learn combo

• Boosting: add models sequentially to correct predictions as you go
• Output weighted average

• e.g., XGBoost, AdaBoost, etc.

• Have n predictions: compute sample variance in naïve way, or other

33

Deep Ensembles

• Can apply bagging, stacking, boosting to DNNs

• Empirically: quite good predictive performance (competitions)

• Computationally: easily parallelized

• Implementation: much simpler!

• Lakshminarayanan et al. 2017: uniform stacking of DNNs
• Train using a proper scoring rule
• Adversarial training to smooth predictive distribution
• Output: Gaussian w/ sample mean, variance

• View of MC dropout as deep ensemble w/ shared parameters
• “Implicit” ensemble: sampled networks with randomly dropped neurons

34

https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf

& more…

• Variational Autoencoders

• Neural processes: VAE, but for prediction
• Multi-fidelity hierarchical NPs

• More generally: Bayesian models,
hierarchical models, PGMs, etc.

35Ganelo et al. 2018

https://arxiv.org/pdf/2104.14421.pdf
https://arxiv.org/pdf/2104.14421.pdf
https://arxiv.org/pdf/2206.04872.pdf
https://arxiv.org/pdf/1807.01622.pdf

Questions?

SVI

• How can we use backprop to
learn an approximate posterior?

• Focus on formulating a
variational objective

• Takes advantage of autograd
packages, GPU

• Generally faster!

• What if true posterior ∉ chosen
family? Not even close?

MCMC

• How can we “directly” sample
from the posterior?

• Focus on your sampler matching
the true posterior, and quickly!

• Takes advantage of compilation
packages, CPU / parallel proc.

• Generally slower

• Exact in the limit!

37

Summary: Approximate Posterior Inference

• Depends heavily on downstream tasks!

SVI

• Larger datasets

• Quicker exploration of many
models

• Generally underestimates
posterior variance
• Perspective as regularizing?

• Assumes independence of vars
(mean-field)

MCMC

• Smaller datasets

• Have model class we’re pretty
confident in already

• Require precise inference
• More complex underlying dist.?

• Overfit data, noise?

• Works on highly-correlated vars

38

Summary: When to use...? (from Blei et al. 2018)

https://arxiv.org/pdf/1601.00670.pdf

Summary: Uncertainty modeling

Many different ways of modeling predictive uncertainty, some
Bayesian, some not, some neural networks, …

• Gaussian processes

• (Bayesian) Neural networks

• Deep kernels

• (Deep) ensembles

• Neural processes + more

39

Other orders of business

• HW 3 out tonight
• Focuses more on practical implementation, as these are likely the methods

you’ll use in your projects / The Real World ™

• Due Wed 04/26

• Looking forward: how do we use UQ methods in larger decision-
making frameworks?
• Tuesday: adaptive experimentation w/ Yisong

• Thursday: TBD

• Next Tuesday: Bayesian optimization w/ Raul

40

Questions?

	Slide 1: Lecture 6: MCMC + (Deep) Uncertainty Models CS/CNS/EE/IDS 159: Advanced Topics in Machine Learning Caltech, Spring 2023 James Bowden
	Slide 2: Lecture Outline
	Slide 3: Refresher: Approximate Posterior Inference
	Slide 4: Summary: Approximate Posterior Inference
	Slide 5: When to use...? (from Blei et al. 2018)
	Slide 6: Questions?
	Slide 7: MCMC: Markov Chain Monte Carlo
	Slide 8: Markov chains
	Slide 9: MCMC for Bayesian inference
	Slide 10: Relevant Markov chain properties
	Slide 11: MCMC samplers
	Slide 12: Metropolis-Hastings
	Slide 13: Metropolis-Hastings
	Slide 14: MH: Properties satisfied?
	Slide 15: MH conclusions
	Slide 16: Questions?
	Slide 17: Gibbs (special case of MH)
	Slide 18: Hamiltonian (or hybrid) MC
	Slide 19: NUTS (extension of HMC)
	Slide 20: Sidenote: SGMCMC
	Slide 21: MCMC practicalities
	Slide 22: MCMC practicalities
	Slide 23: MCMC: Implementation
	Slide 24: Uncertainties?
	Slide 25: Lecture Outline
	Slide 26: High-Level: Approximate Posterior Inference
	Slide 27: Refresher: Uncertainty in Bayesian inference
	Slide 28: Gaussian Processes
	Slide 29: Neural networks
	Slide 30: Neural networks
	Slide 31: Neural networks
	Slide 32: Deep Kernels
	Slide 33: Ensembles
	Slide 34: Deep Ensembles
	Slide 35: & more…
	Slide 36: Questions?
	Slide 37: Summary: Approximate Posterior Inference
	Slide 38: Summary: When to use...? (from Blei et al. 2018)
	Slide 39: Summary: Uncertainty modeling
	Slide 40: Other orders of business
	Slide 41: Questions?

