Lecture 6: MCMC + (Deep) Uncertainty Models

CS/CNS/EE/IDS 159: Advanced Topics in Machine Learning Caltech, Spring 2023

James Bowden

Lecture Outline

- Approximate Inference: SVI vs. MCMC
- MCMC: approximately sampling from the "true" posterior
- (Deep) Uncertainty models (inference-method agnostic?)
 - Gaussian processes
 - (Bayesian) Neural networks
 - Deep kernels
 - (Deep) ensembles
 - Neural processes + more

Refresher: Approximate Posterior Inference

- Why posterior inference?
 - Learn a distribution over parameters, θ , for our model

$$p(\theta \mid D) = \frac{p(\theta)p(D \mid \theta)}{p(D)}$$

- Given posterior: sample parameters, compute predictive distribution, compute predictive uncertainties for any test point, ...
- Why approximate?
 - Evidence ("marginal likelihood") is generally intractable: "marginalize" out all parameters, i.e., compute high-dimensional integral w/ dim(θ)
 - Want complex models / high-dim θ , have data from complex distribution

Summary: Approximate Posterior Inference

<u>SVI</u>

- How can we use **backprop** to **learn** an approximate posterior?
- Focus on formulating a variational objective
- Takes advantage of autograd packages, GPU
- Generally faster!
- What if true posterior ∉ chosen family? Not even close?

<u>MCMC</u>

- How can we "directly" sample from the posterior?
- Focus on your **sampler** matching the true posterior, and **quickly**!
- Takes advantage of compilation packages, **CPU / parallel proc.**
- Generally slower ⊗
- Exact in the limit!

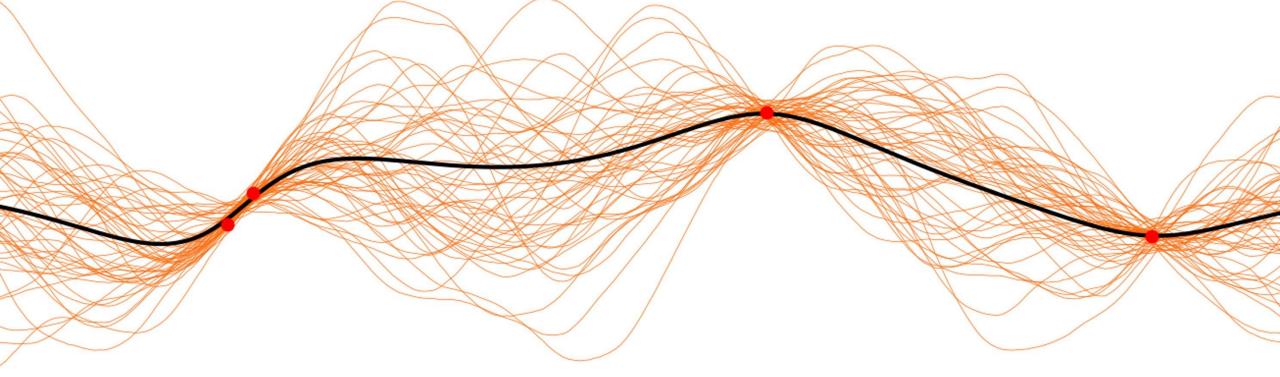
When to use...? (from <u>Blei et al. 2018</u>)

<u>SVI</u>

- Larger datasets
- Quicker exploration of many models
- Generally underestimates posterior variance
 - Perspective as regularizing?
- Assumes independence of vars (mean-field)

MCMC

- Smaller datasets
- Have model class we're pretty confident in already
- Require precise inference
 - More complex underlying dist.?
 - Overfit data, noise?
- Works on highly-correlated vars
- Depends heavily on downstream tasks!



Questions?

MCMC: Markov Chain Monte Carlo

- Why Markov chains?
 - If you can get chain to converge to desired stationary distribution...
 - Very cheap* to draw samples from this distribution!
- Why Monte Carlo?
 - Customary name for simulation of random processes
- So, if we can arbitrarily draw samples from the posterior, good enough!
 - In the limit, we'll recover the "true posterior"*

Markov chains

A Markov chain is defined by:

- A state space, X, e.g., all possible parameter vectors
- An initial distribution, P(X₁)
- A transition probability distribution, $P(X_{n+1} | X_n)$
 - Remove dependence on *n*

We get a chain of random elements X₁, X₂, ..., X_n

- Each sample in the chain is drawn from $P(X_{n+1} | X_n)$
- Would like $P(X_{n+1} | X_n) = P(\theta | D)$, the posterior \rightarrow posterior sampling!

MCMC for Bayesian inference

What do we want for Bayesian inference?

• Generally, predictive mean and variance:

$$\mathbb{E}[y_*|Y;X] = \mathbb{E}_{\theta \sim p(\theta|Y;X)}[f_{\theta}(x_*) + \epsilon]$$
$$\mathbb{V}[y_*|Y;X] = \mathbb{E}_{\theta \sim p(\theta|Y;X)}[(f_{\theta}(x_*) + \epsilon)^2] - \mathbb{E}_{\theta \sim p(\theta|Y;X)}[f_{\theta}(x_*) + \epsilon]^2$$

What do we need from MCMC?

- Posterior samples, $\theta \sim p(\theta|Y;X)$
- Hopefully: accurate* + lots of them

Relevant Markov chain properties

Markov chain: sequence of random elements X_1 , X_2 , ... where:

- Markov property: $P(X_{n+1} | X_1, ..., X_n) = P(X_{n+1} | X_n)$
- **Ergodicity**: can get to any state X ∈ X (not necessarily in 1 step)
 - Long-term, each state is independent of start state
- **Reversibility**: forward chain and reversed chain have same distr.
 - Implies stationarity, not other way around
- **Stationarity**: P(X_n) does not depend on *n* (along w/ MP)
 - Stationary distribution, $\pi_i = P(X_n = i)$

Reversibility + ergodicity => distribution of samples $\rightarrow \pi(X)$ in limit

MCMC samplers

Intuition: spend time at any $\theta \in \theta$ proportional to target density

- Metropolis-Hastings (1953 / 1970, physicists/chemists)
- Gibbs (1984) MH special case
 - Brought to statistics, Bayesian community in 1990
- Hamiltonian MC (1987, Neal 1996, Stan 2012)
- NUTS (2014) HMC extension
- Slice sampling fun bonus content
- ...? your sampler?

Metropolis-Hastings

Algorithm sketch:

- Choose arbitrary starting state, θ_1
- Choose arbitrary* proposal distribution, $P(\theta_{cand} | \theta_n)$
 - Generally chosen to be symmetric, e.g., $N(\theta_n, \sigma^2)$, σ^2 is a hyperparameter
- For *t* samples:
 - Pick $\theta_{cand} \sim P(\theta_{cand} \mid \theta_n)$
 - Compute acceptance ratio, $\alpha = P(\theta_{cand} | D) / P(\theta_n | D)$
 - Generate uniform random number $r \in [0,1]$
 - Accept $\theta_{n+1} = \theta_{cand}$ if $\alpha \ge r$; o/w reject and $\theta_{n+1} = \theta_n$

Metropolis-Hastings

• Acceptance ratio includes posterior...

$$\alpha = \frac{P(\theta_{cand}|D)}{P(\theta_n|D)} = \frac{\frac{P(\theta_{cand})*P(D|\theta_{cand})}{P(D)}}{\frac{P(\theta_n)*P(D|\theta_n)}{P(D)}} = \frac{P(\theta_{cand})*P(D|\theta_{cand})}{P(\theta_n)*P(D|\theta_n)}$$

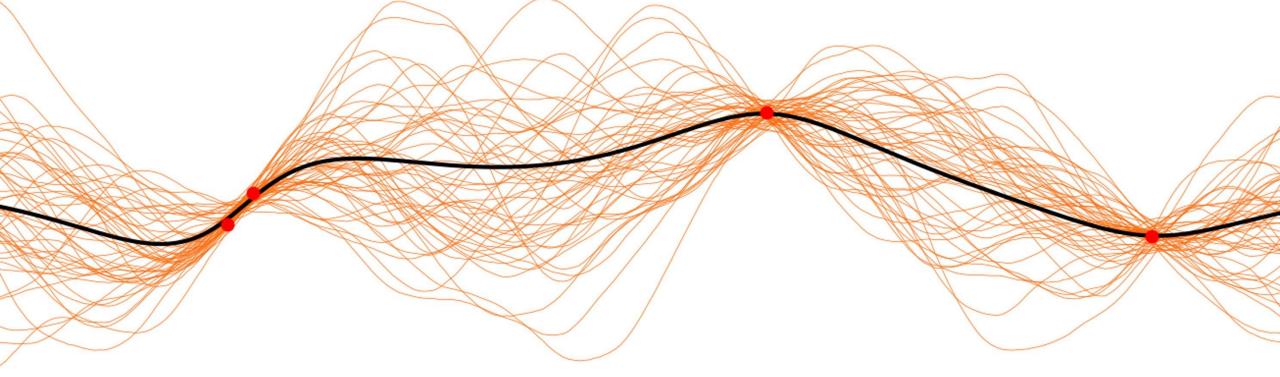
- Key insight: only need **unnormalized density** (prior * likelihood)
- i.e., don't need to calculate the (intractable) marginal likelihood!
 - Marginal is **not** dependent on choice of θ

MH: Properties satisfied?

- Markov property: $P(X_{n+1} | X_1, ..., X_n) = P(X_{n+1} | X_n)$
 - Yes, proposal distribution only relies on θ_n
- **Ergodicity**: can get to any state X ∈ X (not necessarily in 1 step)
 - Yes, Gaussian can get to any vector in $\pmb{\theta}$
- **Reversibility**: forward chain and reversed chain have same distr.
 - Gaussian update: symmetric probability between θ_{n+1} and θ_n
- **Stationarity**: P(X_n) does not depend on *n* (along w/ MP)
 - By reversibility
 - Stationary distribution: the posterior!

MH conclusions

- Fun visualization (1 and 2)
- Pretty intuitive
- What proposal distribution to choose?
 - If Gaussian, what σ^2 ?
 - How to cover high-dim **\theta** space well?
- "Too random" high rejection rates, wasted compute
- In practice, nearby samples are correlated
 - May take many samples to reach limit behavior



Questions?

Gibbs (special case of MH)

Algorithm sketch:

- Choose arbitrary starting state, θ_1
- For *t* samples:
 - Sample each component of θ_{n+1} , θ_{n+1}^{i} , $i \in [1, m]$, holding others fixed
 - $\theta_{n+1}^{i} \sim P(\theta_{n+1}^{i} \mid \theta_{n+1}^{1}, ..., \theta_{n+1}^{i-1}, \theta_{n}^{i+1}, ..., \theta_{n}^{m})$
- Iteratively sample from conditional posterior, $P(\theta^{i} | D, \theta^{-i})$
 - $P(\theta \mid D) = P(\theta^{m}i \theta^{-i} \mid D) = P(\theta^{i} \mid D, \theta^{-i}) * P(\theta^{-i} \mid D)$
 - Good for e.g., PGMs specified as collection of conditionals, conjugate priors
- MH special case: acceptance ratio is always 1

Hamiltonian (or hybrid) MC

- Metropolis-Hastings with gradient-based proposals
- Idea: include position, momentum information over density surface
 - Starting at θ_n , run *L* steps of particle simulation (via Hamiltonian dynamics)
 - Lands at θ_{cand} , which we accept using similar acceptance ratio criteria
- Better at exploring farther from last state
- More likely to yield candidates that are actually accepted
 - Tends to "converge" to target distribution in fewer (more expensive) samples
- Fun visualization (3 and 4)

NUTS (extension of HMC)

- What if *L* is too small?
 - Behaves like random walk, similar to original MH algo.
- What if *L* is too large?
 - Brings us back near θ_n , bad for efficient exploration!
 - Fun visualization (5)
- Idea: adaptively set *L* to prevent **U-turns**
 - Run Hamiltonian dynamics both forward and backward
 - Stop when hit a U-turn condition!
 - Randomly sample from path (both fwd, bwd)
- Fun visualization (6)

Sidenote: SGMCMC

- Gradient-based MCMC steps are expensive
 - Have to compute gradient of log posterior, P($\theta_n \mid D$)
 - Generally requires summing over all of the context data
- After SGD: can we **subsample** and make a stochastic approximation to the gradient?
- Produces consistent estimates, scales with data, slower convergence

MCMC practicalities

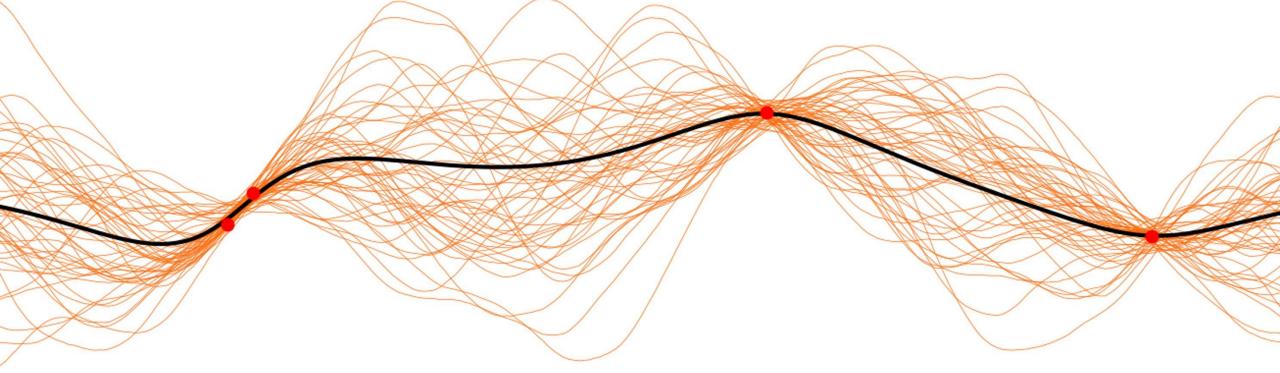
- How many samples until convergence to stationary distribution?
 - **Mixing**: how quickly your chain reaches $\pi(X)$
 - Approximate in practice b/c still affected by starting position to some extent
 - Some theory on this: see Markov chain central limit thm.
- How can you tell that you've converged? That you haven't?
 - Run multiple chains
 - Various diagnostics (e.g., effective # samples, inter:intra-chain var. ratio)

MCMC practicalities

- Pseudo-convergence / multimodality
 - Appears to converge, but eq. distribution is still conditioned on initialization
 - Stuck in one mode due to hyperparameter settings, sampler?
 - Fun visualization (7)
- Trade-off between **chain length** (limit convergence) and **# chains** (convergence detection? avg. across initializations?)

MCMC: Implementation

- Python packages like NumPyro (jax-based), Pyro (torch-based), etc.
 - Still need gradient capabilities for gradient-based samplers! Hence jax, torch
- R packages like stan, mcmc, etc.
- Write your own sampler! (just kidding, probably don't)
- Embarrassingly parallelizable (<u>Neiswanger et al. 2014</u>)
- Generally, you provide:
 - Target distribution [prior over θ_n , likelihood function] + data
 - # chains, # samples, # burn-in, [thinning, initialization strategy, etc.]



Uncertainties?

Lecture Outline

- Approximate Inference: SVI vs. MCMC
- MCMC: approximately sampling from the "true" posterior
- (Deep) Uncertainty models (inference-method agnostic?)
 - Gaussian processes
 - (Bayesian) Neural networks
 - Deep kernels
 - (Deep) ensembles
 - Neural processes + more

High-Level: Approximate Posterior Inference

- We've seen how to do exact inference in special cases:
 - BLR if prior, likelihood are Gaussian
 - Exact Gaussian Processes "
- Otherwise: use either SVI, MCMC, or something else to approximate the posterior or its samples
 - In theory, you can be "Bayesian" about the parameters of any model
- What can we do with? Survey of models that produce uncertainties...

Refresher: Uncertainty in Bayesian inference

What do we want for Bayesian inference?

• Generally, predictive mean and variance:

$$\mathbb{E}[y_*|Y;X] = \mathbb{E}_{\theta \sim p(\theta|Y;X)}[f_{\theta}(x_*) + \epsilon]$$
$$\mathbb{V}[y_*|Y;X] = \mathbb{E}_{\theta \sim p(\theta|Y;X)}[(f_{\theta}(x_*) + \epsilon)^2] - \mathbb{E}_{\theta \sim p(\theta|Y;X)}[f_{\theta}(x_*) + \epsilon]^2$$

What do we need from MCMC (or SVI)?

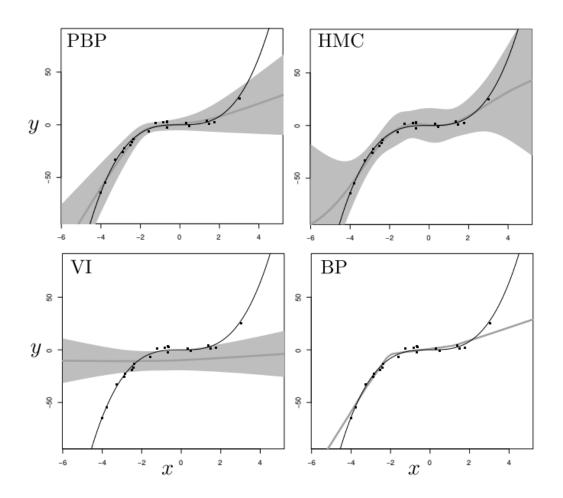
- Posterior samples, $\theta \sim p(\theta|Y;X)$
- Hopefully: accurate* + lots of them

Gaussian Processes

- Exact GP gives closed-form posterior computation
 - Can sample from, get predictive mean, variance
- Approximate GP inference...when should we do?
 - GP hyperparameters are pretty minimal
 - GP inference scales cubically with data
 - Sparse GPs, non-Gaussian likelihoods, classification: no closed-form
- Variational GPs, MCMC GPs
 - Define prior over hp (e.g., lengthscale, noise)
- SVI/MCMC doesn't buy much in the way of UQ GP already has var.

Neural networks

- Deterministic NN: scalar weights, point estimate predictions
- Probabilistic Backpropagation (PBP):
 - Distributions over weights like in a standard BNN
 - Instead of prediction error, compute marginal log likelihood as loss
 - Gradient update minimizes KL div.
 - + approximations, implementation details, etc.



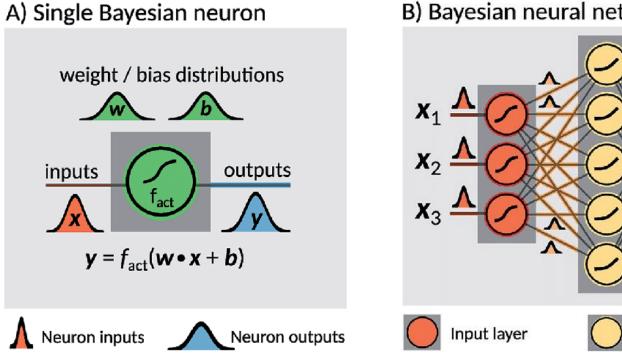
Neural networks

- Laplace approximation: 2nd order Taylor approx. about MAP
 - Compute inverse Hessian of log likelihood: scales very poorly
- Monte Carlo Dropout: test-time dropout, viewed as approximate posterior sampling
 - Argument: approximate intractable posterior with q(w), a distribution over matrices whose columns are randomly set to 0 == dropped out neuron
 - Min. KL div. in this setting recovers L2 regularization loss that dropout uses
 - Intuition: view instance of dropout as a sample, buys us predictive variance
 - Super popular for its simplicity, has fallen out of favor of late (?)

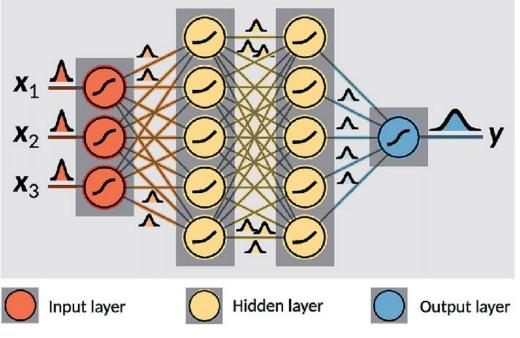
Neural networks

• "Standard" BNN training: SVI or MCMC!

• See Izmailov et al. 2021

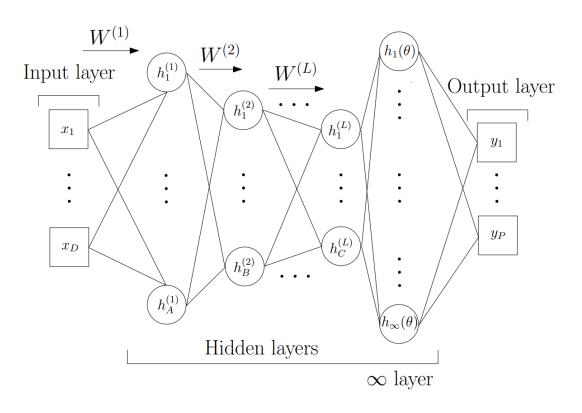


B) Bayesian neural network



Deep Kernels

- Representational power of NN
- UQ from GP
- Backprop through GP + NN
 - Can also use SVI, MCMC, MC dropout
- Nice properties from both sides, avoids custom kernel design, allows for transfer / unsupervised (VAE?) learning
- Overfitting, see Ober et al. 2021
- My current research! Ask me about :)



Ensembles

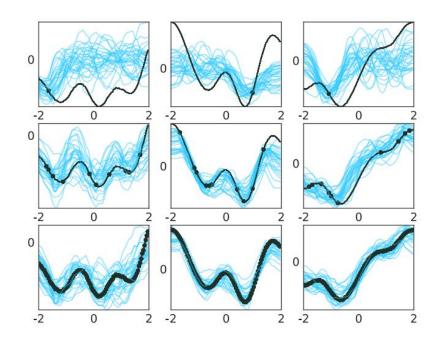
- Idea: train many independent models and combine
 - Model combination makes sense when true model ∉ hypothesis class
- **Bagging**: fit models on different subsamples, average predictions
 - e.g., random forests, extra trees, etc.
- Stacking: fit models on same data, use meta-model to learn combo
- Boosting: add models sequentially to correct predictions as you go
 - Output weighted average
 - e.g., XGBoost, AdaBoost, etc.
- Have *n* predictions: compute sample variance in naïve way, or other

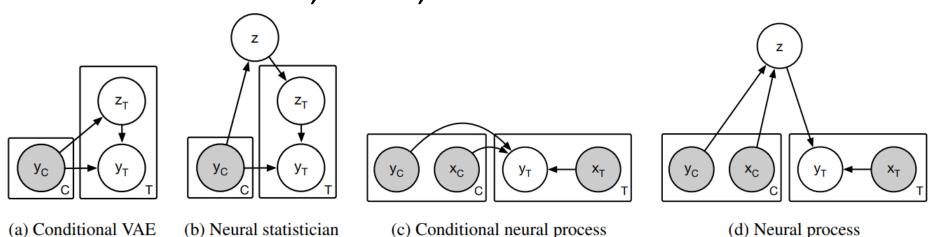
Deep Ensembles

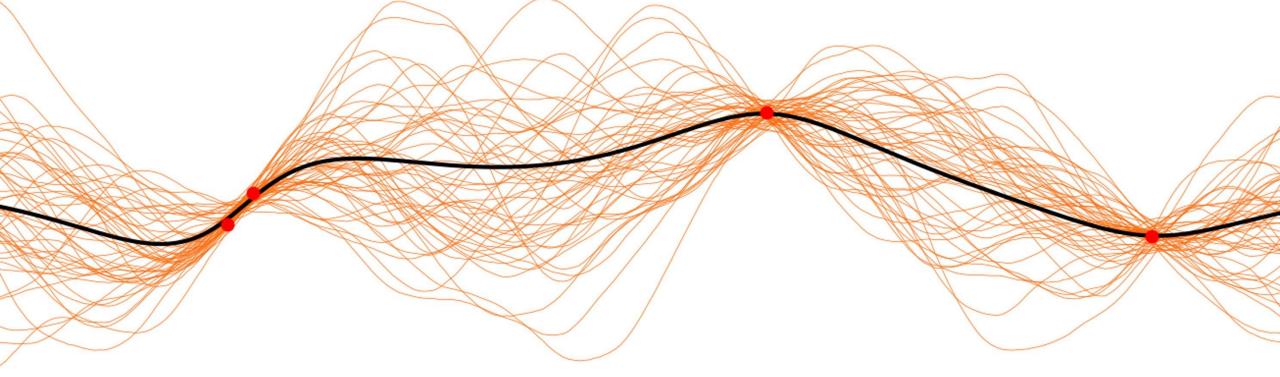
- Can apply bagging, stacking, boosting to DNNs
- Empirically: quite good predictive performance (competitions)
- Computationally: easily parallelized
- Implementation: much simpler!
- Lakshminarayanan et al. 2017: uniform stacking of DNNs
 - Train using a proper scoring rule
 - Adversarial training to smooth predictive distribution
 - Output: Gaussian w/ sample mean, variance
- View of MC dropout as deep ensemble w/ shared parameters
 - "Implicit" ensemble: sampled networks with randomly dropped neurons

& more...

- <u>Variational Autoencoders</u>
- <u>Neural processes</u>: VAE, but for prediction
 - <u>Multi-fidelity hierarchical NPs</u>
- More generally: Bayesian models, hierarchical models, PGMs, etc.







Questions?

Summary: Approximate Posterior Inference

<u>SVI</u>

- How can we use **backprop** to **learn** an approximate posterior?
- Focus on formulating a variational objective
- Takes advantage of autograd packages, GPU
- Generally faster!
- What if true posterior ∉ chosen family? Not even close?

<u>MCMC</u>

- How can we "directly" sample from the posterior?
- Focus on your **sampler** matching the true posterior, and **quickly**!
- Takes advantage of compilation packages, **CPU / parallel proc.**
- Generally slower ⊗
- Exact in the limit!

Summary: When to use...? (from <u>Blei et al. 2018</u>)

<u>SVI</u>

- Larger datasets
- Quicker exploration of many models
- Generally underestimates posterior variance
 - Perspective as regularizing?
- Assumes independence of vars (mean-field)

MCMC

- Smaller datasets
- Have model class we're pretty confident in already
- Require precise inference
 - More complex underlying dist.?
 - Overfit data, noise?
- Works on highly-correlated vars
- Depends heavily on downstream tasks!

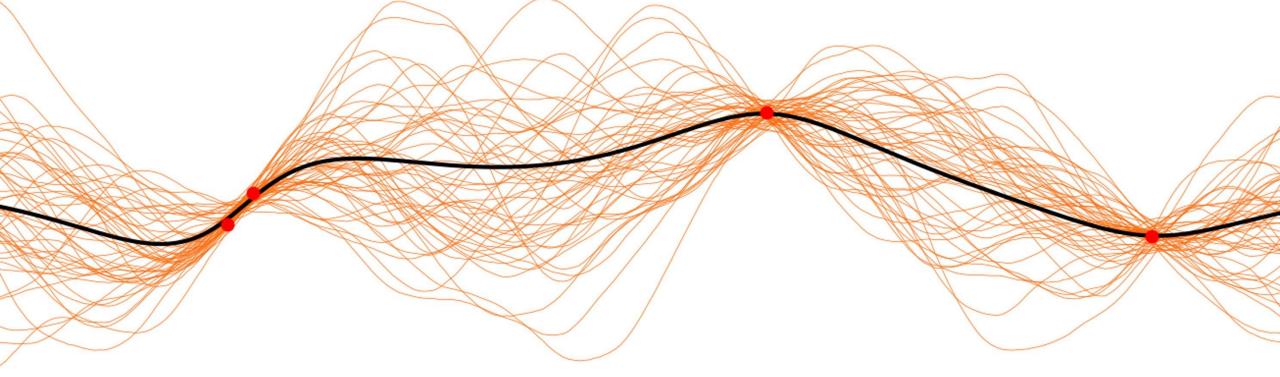
Summary: Uncertainty modeling

Many different ways of modeling predictive uncertainty, some Bayesian, some not, some neural networks, ...

- Gaussian processes
- (Bayesian) Neural networks
- Deep kernels
- (Deep) ensembles
- Neural processes + more

Other orders of business

- HW 3 out tonight
 - Focuses more on practical implementation, as these are likely the methods you'll use in your projects / The Real World ™
 - Due Wed 04/26
- Looking forward: how do we use UQ methods in larger decisionmaking frameworks?
 - Tuesday: adaptive experimentation w/ Yisong
 - Thursday: TBD
 - Next Tuesday: Bayesian optimization w/ Raul



Questions?